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Asymptotic Behavior of Fluctuations for the 
1D Ising Model in Zero-Temperature Limit 
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Fluctuation of the average spin for one-dimensional Ising spins with nearest 
neighbor interactions are studied. The distribution function for the average spin 
is calculated for a finite volume, finite temperature, and finite magnetic fielC As 
the volume increases and the temperature diminishes at zero magnetic field, 
there are two limits in which the probability distribution shows quite different 
behaviors: in the thermodynamic limit as the volume goes to infinity for finite 
temperature, small deviations of the fluctuations are described by a Gaussian 
distribution, and in the limit as the temperature vanishes for a finite volume, the 
ground states are realized with probability one. The crossover between these 
limits is analyzed via a ratio of the correlation length to the volume. The 
helix-coil transition in a polypeptide is discussed as an application. 

KEY WORDS:  Fluctuations; 1D Ising model; exact results; distribution func- 
tion; zero-temperature limit; first-order phase transition; helix-coil transition. 

1. I N T R O D U C T I O N  

A one-dimensional Ising model with short-range interactions undergoes no 
phase transitionJ 1-3) The free energy is analytic for finite temperature T 
and a magnetic field h. As the temperature decreases at h = 0, correlations 
between spins extend over larger distances and short-range order of spin 
develops. In the limit as the temperature vanishes, for a finite system the 
correlations extend to the whole of the system, while the correlation length 

increases toward infinity for an infinite system. Then spin fluctuations are 
definitely affected by boundary conditions, and spontaneous magnetization 
may occur. Indeed, it has been found that a finite-size scaling law for a 
first-order phase transition holds in the vicinity of the point T = 0  and 
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h = 0. (4) Recently, Schonmann and Tanaka showed that in the limit N ~ oo 
and T ~  0 at h = 0, the one-dimensional nearest neighbor ferromagnetic 
Ising (1DNNFI)  model with free boundary conditions presents a sharp 
transition between two different regimes(5): the probability distribution 
of an average spin is described by the discrete measure concentrated on 
the numbers + 1 for ~ >> N, the normal distribution with a vanishing 
expectation value and a variance of order N -  1 for ~ ~ N, and the limiting 
distribution which has a discrete and an absolutely continuous part, at 
the transition point ~ = N, where ~ = e 2~J is an asymptotic form of the 
correlation length for the corresponding infinite system, and fl and J are 
the inverse temperature and the interaction strength, respectively. For  the 
description of the transition, they did not use the parameter (4) y =-Ne -2~] 

and actually used the parameter ~ - (2flJ)-  J In N, which leads to the limit 
y-- ,oo f o r 0 < a < l ,  t o y = l  at e = l ,  and to the l i m i t y ~ 0 f o r  e > l  as 
N increases toward infinity. Therefore, they could not give a complete 
description of the crossover from the limiting distribution as y goes to 
infinity to that as y vanishes. The absolutely continuous part of the 
distribution at c~-- 1 has not been written in an analytical form also. In this 
paper, we will study fluctuations of the average spin for the I D N N F I  system 
in Gibbs ensembles and obtain an analytical form of the distribution. 

The 1DNNFI model finds many applications to, for example, poly- 
peptides for the helix-coil transition, polymer chains with adsorption 
along the chain, two-level Markov chains, and so on. (6-9) For  a bulk 
system thermodynamic properties as T ~  0 are obtained by taking the 
thermodynamic limit N--+ oo first and then the limit T - , 0 .  (w~ Since the 
free energy for the I D N N F I  system is analytic, the asymptotic distribution 
of an average spin can be described by the Legendre transform of the free 
energy with respect to a magnetic field. However, there are sometimes the 
cases that the correlation length goes beyond the length of a polypeptide 
for the helix--coil transition or of a polymer chain for the adsorption along 
the chain. In these cases, the large-deviation theory is invalid, so that the 
entropy function (or the asymptotic distribution function) cannot be 
derived from the free energy by Legendre transformation. (3) Investigating 
the fraction of helical amino acids for the helix-coil transition and the 
coverage of adsorption sites for the adsorption along the chain, we are 
interested in its probability distribution as well as its expectation value 
and its variance. Hence, it is worthwhile to calculate the probability 
distribution of an average spin for the 1DNNFI system with a finite 
volume. As far as I know, this calculation has not yet been done. 

Critical phenomena on the band-splitting bifurcation of a chaotic 
dynamical system can be studied in terms of a two-level Markov chain/9) 
Determined via observing a chaotic orbit for a finite time n, a probability 
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for a point to be found on one side of two bands (or states) fluctuates. 
In the vicinity of a bifurcation point, the fluctuations of a probability 
distribute in the same form as those of an average spin for the 1DNNFI 
system in the limit N ~  ~ and T--*0. (al) AS a controlled parameter 
approaches the bifurcation point, the transition probability e from one 
band (or state) to the other becomes smaller and the correlation time 
increases with r oc e-1. The asymptotic behavior of the fluctuations of a 
probability for n and ~ >> 1 has been investigated in numerical simula- 
tions. (9'12) In order to get asymptotic behaviors for n>>r>> 1, one must 
expend more CPU time in numerical calculations than to get those for 
r>n>> 1. However, the asymptotic behavior of the fluctuations for 

> n >> 1 has not been studied, because of the absence of theory, while the 
numerical results for n >> ~ >> 1 are in good agreement with the theoretical 
results derived from the Legendre transform o f  the free energy for the 
1DNNDI systemJ 9'12) For the study of critical phenomena on the band- 
splitting bifurcation, the results in this paper are useful not only for 
n>>~>> 1, but also for 1 ~n~<~. 

Section 2 gives a brief review and some definitions for the 1DNNFI 
system with periodic boundary conditions. In Section 3 we perform an 
exact calculation in the cluster expansion of the partition function. We 
obtain an analytical form of the distribution function for the average spin. 
The distribution function for the number of cluster surfaces is also 
calculated. In Section 4 we investigate the asymptotic behavior of the 
distribution functions for the average spin and the number of cluster 
surfaces in the limit as the volume goes to infinity and the temperature 
vanishes. Since an asymptotic form of the distribution function for the 
average spin is analytically obtained, we have a complete description of the 
crossover from the limiting distribution in the thermodynamic limit to that 
at the zero temperature. In Section 5 we discuss the helix-coil transition in 
a polypeptide consisting of N amino acid residues. We find that fluctua- 
tions of the fraction of helical amino acids for N ~  102 show qualitatively 
different behaviors from those for N>> 102: the helix-coil transition for 
N ~  102 is analogous to the first-order phase transition, while it is the 
well-known one for N>> 102. In appendices the asymptotic behavior of the 
distribution function for the average spin is investigated not only in 
ferromagnetic cases with different boundary conditions, but also in an 
antiferromagnetic case with periodic boundary conditions as the volume 
goes to infinity and the temperature vanishes. 
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2. DEFIN IT IONS 

We consider a chain of Ising spins {~}-(ohm1 ..-aN) with nearest 
neighbor interactions J. The Hamiltonian of the chain is written as 

N N 

H({~})=-J E cr ia i+l -h  E a, (2.1) 
i = l  i = l  

with suitable boundary conditions, where ai are Ising spins (a; = _ 1). The 
corresponding Gibbs measure at inverse temperature fl is given by 

pN({a}; fl, h) = [ZN(fl, h)] -1 exp[--flH({a})] (2.2) 

where 

3N(fl, h)= ~ exp[-flH({~})] (2.3) 

The partition function (2.3) can be written in terms of a 2 x 2  transfer 
matrix whose eigenvalues are 

2+_ = e'~S{cosh(flh) +_ [sinh2(flh) + e -4'~+] 1/2} (2.4) 

In the thermodynamic limit, the free energy Goo(fl, J) for finite temperature 
is independent of boundary conditions, given by 

G~o(fi, h ) =- - l imo ~---~ ln ZN 

= _fl-1 In 2+ (2.5) 

For a spin configuration {a}, the magnetization per site (i.e., the 
average spin) is given by 

1 
m({~}) = N,~'I= ~' (2.6) 

Now, we write 

DN=-- { J  ,j= --N, - N  + 2,..., N -  2, N} (2.7) 

Let PN(#; fl) denote the probability that m({a}) takes a value # e DN at 
h = 0. The Landau free energy qSN and the entropy function SN are defined 
on D N a s  

ON(#; fl, h) = --~ In e -~H({~}) 6.(m({~})) (2.8) 

SN(kt; fl) = l l n  PN(#; fl) (2.9) 
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where 3 , ( x ) =  1 for x = it, and 0 for x ~ #. The partition function (2.3) can 
be written as 

Z,u(fl, h ) =  ~ exp[ - -Nf l r  fl, h)] (2.10a) 
It e D N  

=ZN(fl, h=O) 2 eNflUhpN(,a;fl) (2.10b) 
# E D N  

As N goes to infinity for 0 < fl < ~ ,  the ~/N and s N converge pointwise 
to continuous functions ~ and s~ on the interval D ~ - - - I - - 1 ,  +1 ] ,  
respectively. (3) For  N>> 1, we can use maximum term approximations in 
(2.10). Then it turns out that 

G~(fl, h ) =  min ~ ( p ;  fl, h) (2.11a) 
p 

=Goo(fl, h=O)-max{#h+f l -~s~(#; f l ) }  (2.11b) 
,u 

Since G~(fl, h) is analytic for 0 < f l < o o  and [hl<oo,  s~(/~,fl) and 
~p~(p; fl, h) can be obtained by using the Legendre transformation. Fluc- 
tuations of the average spin can be characterized by the entropy function 
s~(p, fl). The correlation length of spins can be written as 

~(T) = [ln(2 +/2_ )3 -~ (2.12) 

In the limit fl - .  o0 the eigenvalues (2.4) are degenerate at h -- 0, and ~(T) 
diverges exponentially. Thus, the free energy G~(fl, h) is nonanalytic at 
T =  0 and h = 0. (2) As fl and N go to infinity, the fluctuations show different 
asymptotic behaviors between the cases ~(T) > N and ~(T) ~ N. For  ~ ~ N 
we can obtain the asymptotic form of SN(~; fl) from Go~(fl, h). For  ~ (T)>  N 
the  asymptotic behaviors are affected by boundary conditions, so that the 
free energy Goo(fl, h) cannot give true information about the fluctuations. 
However, it seems that the calculation of su(p; fl) is a hard task, using the 
transfer matrix method for calculating the partition function. In the next 
section, a cluster expansion method will be given to calculate ZU(fl, h) and 

P N(~U; fl). 

3. C L U S T E R  E X P A N S I O N  2 

For  simplicity, we assume periodic boundary conditions, aN+ ~ = as, in 
this section. Other cases with different boundary conditions are discussed in 
appendices. 

2 During the final stage of preparation of this manuscript I found out that some of the 
arguments in this section are the same as in the original work of E. Ising. See refs. 15. 

822/7i/5-6-10 
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A configuration {a} of N spins is completely specified by a linear 
sequence of alternating clusters of spins up (ai = + 1) and those of spins 
down (ai = -1) .  The position of the boundary between adjacent clusters is 
represented by an index i that gives aiai+,= -1 .  The symmetry of the 
periodic boundary conditions yields that the number of these boundaries is 
even. Let us consider a configuration {a} which consists of k clusters of 
spins up; we write k --- 0 if all spins are up or down. Assume that 2k indices 
labeling the boundaries are given in order of magnitude by C5) 

1 ~ < j l < j 2 <  "'" <J2k~ N (kr  (3.1) 

First we consider a case of al - + 1. The numbers, of spins up and of spins 
down are given by 

N+({a})  = J l  + ( J 3 - J 2 ) +  "'" + (N--j2k) 

N ({a}) = (J2--Jl) + (J4--J3) + ""  + (J2k--Jzk-1) 
(3.2) 

respectively. The total magnetization can be written as 

Um({o-}) = N+ ({a}) - N_ ({a}) (3.3) 

where m({a}) is the average spin per site. From (3.2) it follows that 

N + ( { a } ) - - N  [ l_+m({a})]  
Z 

(3.4) 

A statistical weight of the configuration (3.1) is completely determined by 
the number of clusters and the  value of the average spin, not depending on 
details of the configuration. 

Let us calculate the total number of the configurations for which the 
average spin takes a value # ~ D  N. As al = +1, we have 0"U= --1 if J2k = N, 
and O'N = + 1 if J2k < N. Assume J2k = N. The number of combinations that 
N+ spins up are divided into k blocks is 

Similarly, the number of combinations that N spins down are divided 
into k blocks is 
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Therefore, the number of the configurations with k clusters of spins up is 
given by 

-"--"-(N;__--ll)(k--11) for jzk=N and e l =  +1 (3.5a) 

On account of the fact that al and aN belong to the same cluster for 
J2k < N, it follows that the number of the configurations with k clusters of 
spins up is 

- - -  - ( N + k - 1 ) ( k - - 1 1 )  for jzk<N and a~= +1 (3.5b) 

Hence, the number of the configurations with k clusters of spins up and 
m ( { a } ) = #  for # ~ D  N c a n  be written as 

[N(1 + #)/2]t IN(1 - # ) / 2 -  13! 
(3.6) 

k! [N(1 + # ) / 2 - k ] !  ( k -  1)! [N(1 - # ) / Z - k ] !  

From a symmetry argument for a t = - 1  we immediately obtain the 
number of the corresponding configurations. The total number of these 
configurations is given by 

Nk IN(1 +#)/2]!  [N(1 - #)/2]! 
N2k(#) = (N/2)2 (1 _ 122)  k! [N(1 + #)/2 - k]! k! [U(1 - #)/2 - k]! 

for k~>l 

=61(#)+6_1(#)  for k = 0  (3.7) 

The whole contribution of the configurations to the partition function is 

W2k(#)=N2k(p)eU(~+*'h)e-4k~J for k~>0 (3.8) 

Therefore we can write the partition function (2.3) in the cluster expan- 
sion (6) 

,-,~N(/~, h) = Z { mo(#)  "1- m2(#)  -}" m4(#)  "~ '" "} (3.9) 
tX ~ D N  

The ,distribution function PN(#;fl, h) and the Landau free energy 
q)N(/~; fl, h) can be written as 

PN(#; fl, h) = Z N2k(#) e 4keJeNe~'h Z N2k(") e-4keJeNe"h 
m,u e/)N k=O k=O (3.1o) 

~N(#; fl, h )=  - - ( J+  #h)-~-7~ In n2k(#)e -4kzJ (3.11) 
0 
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where ko = N(1 - ]#[ )/2. Fluctuations of the number of cluster surfaces (i.e., 
boundaries between spins up and spins down) are described by the 
distribution functions 

ON(Zk; [3, h) = [Zu(fl, h ) ] - I  ~ W2k(#) (3.12a) 
IX E DN 

~gN(2k; #, fl) = N2k(#)e -4kpJ N2k(#)e -4k~J (3.12b) 
0 

Since the ratio W2~k+ ~)(#)/W2k(#) monotonically decreases for 1 ~< k <~ ko, 
the number of cluster surfaces under the constraint m ( { a } ) = #  is most 
probable at the value 

Z 2 

2ku(#) = 1 + Ne-4~J+ [(1 +Ne-4Bs)2+z2(1 -- e-4~s)] m (3.13) 

where we wrote 

z =- Ne-  2as( 1 - #2)2/2 (3.14) 

4. A S Y M P T O T I C  BEHAVIORS FOR N >> 1 

The results obtained in the previous section are evaluated in the limit 
as the volume goes to infinity and the temperature vanishes. 

4.1. Finite Temperature  

Let us derive the free energy (2.5) from the partition function (3.9). As 
N goes to infinity, Eq. (3.13) gives kN(#) "~ O(N) for IP] < 1. We have 

xoo - lim 2ku 
N~o~ N 

={[ l+(1-#2) (e4~S-1)] l / z -1 ) / ( e4aS-1)  for I#[<1  (4.1) 

In order to evaluate Eq. (3.11) in the thermodynamic limit we use Stirling's 
approximations in (3.7) and maximum value approximations in the 
summation of k. Then it follows that 

~ ( / ~ ;  #, h) = - J (1 -2xoo ) -#h+~-~[K(x~o;# ) -K(O;# ) ]  (4.2) 

where we wrote 

K ( x ; # ) = x l n x +  �89 + # - - x )  ln(1 + # - - x ) +  � 8 9  l n ( 1 - # - x )  

(4.3) 
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After some calculations we can write the entropy function (2.9) as 

s~(/~, fl) = In{ [1 + (I - p2)(e4~J- 1)] 1/2 + 1 } 

- p  ln{[1 + (l - -  #2)(egf ld- -  1 ) ]  1/2 -t-/2} 

--�89 - / 0  ln(1 -- F2) - 2flJ(1 - #) - ln(1 + e  -2~J) (4.4) 

and see that the large-deviation theory (2.11) holds, (3~ Equation (4.4) can 
be directly obtained from the Legendre transformation of G~(fl, h) with 
respect to h. (13) 

Let us consider fluctuations of the number of cluster surfaces. (6) Large 
deviations of these fluctuations are characterized by 

~b(x)- lira 1 N~ ~ ~ l n  ON(2k = Nx; fl, h) (4.5a) 

~b,(x) - lim 1 N~ co ~ l n  l~N(2k = Nx; #, fl) (4.5b) 

Since 2kN(#) = N x ,  in the thermodynamic limit, ~ba(x) takes the maximum 
value ~b~(x)= 0 at x = x~ .  Indeed, we can write 

(b~(x) = 2flJ(x~ - x) + K(xoo ; #) - K(x; p) (4.6) 

The substitution of a maximum value approximation for the summation of 
p in (3.12a) leads to 

~(x)=f iJ(1  - 2 x ) + f l # , h + K ( O ; # , ) - K ( x ; # , ) - l n 2 +  (4.7a) 

where we wrote 

2(1 - x) sinh(flh) 
p ,  - (4.7b) 

x cosh(flh) + [x 2 + (2 - x) 2 sinh2(flh)] 1/2 

The most probable value of the density of cluster surfaces is given by 

1 [- cosh(flh) 
x = x ,  - e4~S_ 1 [ [sinh2(flh) + e-4Ps] 1/2 - 1 j (4.8) 

at which the ~b(x) is maximum. 

4.2. In t h e  L imi t  T -~O 

For  ~(z) ,~ N the thermodynamic limit must be taken first and then the 
limit fl ~ oo taken. (l~ The most probable value of the density of cluster 
surfaces XN becomes 

Xoe ~ (1 --]22)l/2e-2flJ---rO (4.9) 
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in this limit. It means that as the temperature vanishes, the clusters grow 
and collapse and their number decreases exponentially in ft. The entropy 
function (4.4) can be written as 

s~(#; fl) ~ e-2~s[(1 _ # 2 ) 1 / 2  1] + O(e -4M) (4.10) 

Therefore, it turns out that 

dP~v(lz;fl, h=O) ( N )  1/2 
d# - ~ exp(- f lJ)exp{N[exp(-2f lJ)][(1-#2)m-1]} 

(4.11) 

This asymptotic form of the distribution function is the same as obtained 
for a two-level Markov process by Fujisaka et al. (9) When fl approaches 
infinity with a fixed N, the probability distribution (3.10) takes the following 
form: 

f6 ( /~ -  1), h > 0  
dPu(#; f l~~176189 h = O  (4.12) 

d# 
h<O 

where we wrote 6(x -  a)=-N6a(X), which becomes a Dirac 6-function as 
N-~  ~ .  The ground state which brings out the alignment of all spins 
is realized with probability one. Hence, a different order of the limiting 
operation leads to a different limit. 

Let us introduce the parameter 

y - N e  2flJ (4.13) 

The asymptotic behavior of the fluctuations can be systematically described 
by taking the limit as N goes to infinity with a fixed y. First we consider 
the case of h = 0. The most probable value of the number of cluster surfaces 
is finite in this limit: 

lim 2kN(#) = y(1 - ~ 2 ) 1 / 2  (4.14) 
y fixed 

Note that Eq. (4.14) gives the same result as Eq. (4.9). The WEk for 
k <~ O(y) can give finite contributions to the partition function (3.9). For 
1 ~< k ~ N, we can write 

1 i( )2 Nzk(#)~-Nk! ( k -  1)! ( 1 -  #2) (4.15) 
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Therefore, we have 

Nzl:(#)e-4k#J~-- Ne-4{~s (k+ 1)! k! (1 _#2 )  (4.16a) 
k = l  k = O  

=d#y2z-lI~(z) as N ~  oe wi tha f ixedy  (4.16b) 

where z is given by Eq. (3.14) and Iv(z) is a modified Bessel function of the 
first kind. Inserting (4.16) into (3.10), we obtain 

{ }/ dP~(#;y,h=O)= 6 ( # - 1 ) + 6 ( / ~ + 1 ) + - - I ~ ( z )  2 c o s h y  (4.17) d# z 

The probability distribution (4.17) has prominent peaks at # =  _1 for 
y < 1 as shown in Fig. 1. Substituting the asymptotic form of Ii(z) for z >> 1 
yields that 

dP~(#; y, h = O) 
d~ 

= [ e x p ( - y ) ]  [6(y - 1) + 6(#  + 1)]  

+(y)1/2 (1-  #2)3/4 exp{ y[ (1-  #2) 1/2-1] } (4.18) 

As the first term is negligible for y >> 1, Eq. (4.18) coincides with Eq. (4.11). 
Since the term of k clusters of spins up W2k is proportional to y2k, the 

P(~) 

z~t~t = 0.05 

0.3 . 

0 . 2 -  

0.1.  

0 -  

1.9 

2O 

- I . 0  

Fig. 1. Probability distribution P(#; y, h = 0) A# with A# = 0.05. 
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power series expansions for y of cosh y and I~(z) give the distribution 
functions O~(k) and #oo(k): 

y2k 
O o~ (2k; y, h = 0) = (k/> 0) (4.19a) 

(2k)! cosh y 

(z/2)~k- 1 
~9~o(2k;#,y)=k!(-s (k>~l and I~1<1) (4.19b) 

In the derivation of Eq. (4.19a) we have used 

2N 2k 
N2k(#) ~ - -  for N>>k 

~ D~ (2k)! 

Note that the /~(2k; /~ ,  y) depends only on the variables k and z explicitly. 
Schonmann and Tanaka studied the distribution of an average spin and of 
the number of cluster surfaces at y =  1 and h--0.  Equations (4.17) and 
(4.19b) do not agree with their results. (5) This disagreement comes from 
difference of the boundary conditions. Some cases with different boundary 
conditions are discussed in Appendix A. 

Let us consider the case of h r 0. Since the distribution function (4.12) 
is nonanalytic at h = 0, we investigate the asymptotic behavior of the 
distribution functions (3.10) and (3.12a) in the following limit: 

N ~  with Ne 2pS=y and Nflh=-afixed (4.20) 

Using 

lira 
N ~ o o  

y, a fixed 

we can write 

dP~(#; y, a) 

e-NaS~N( fl, h) = 2 cosh[(a 2 + y2)1/2] 

ea6(# -- 1 ) + e --a(~([.l -t- 1 ) "t- y 2 z  -- ~e~'Ii(z) 
dp - 2 cosh[(a 2 + y2)m] 

(4.21) 

1 (rca']l/2(y2"] k 
O~(2k; y, a) = ~ \--~/ \2-aa/ I~_ m(a)/cosh[(a 2 +y2)1/2] 

Note that the numerator of the lhs in (4.22) is obtained in the Neumann 
expansion of cosh[(a 2 + y2)1/2]. 

(k >_-0) 

(4.22) 

Inserting (4.15) into (3.8) and performing the integration of # in (3.12a), 
we have 
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5. D ISCUSSION 

We have studied the asymptotic behavior of fluctuations of an average 
spin for the 1DNNFI system as the volume increases toward infinity and 
the temperature vanishes. When the correlation length goes beyond the 
size of the system, the fluctuations are definitely affected by boundary 
conditions and are distributed in a form quite different from a Gaussian 
distribution. For example, in the case with free boundary conditions, the 
distribution function for the average spin has three peaks, two 6 peaks at 
/~ = _+ 1 and one broad peak, for a zero magnetic field. See Fig. 2. A small 
magnetic field h brings out a big change of the mass for each 6 peak. Hence 
the most probable value of an average spin changes discontinuously at 
h=0.  This is characteristic of a first-order phase transition. Similar 
behavior may be shown in fluctuations of the fraction of helical amino 
acids in a polypeptide for the helix-coil transition. 

Let us consider a polypeptide consisting of N amino acid residues, 
each of which is assumed to be in a helical state (h) or coil state (c), 
depending on whether or not the NH group of the ith residue in question 
is hydrogen bonded to the CO group of the ( i -4 ) th  residue. (s) In the 
nearest-neighbor interaction model of Zimm and Bragg (7) the statistical 
weight matrix for the ith residue is given by 

h c 

h ( S c  a s  I )  (5.1) 

z~l.t = 0.05 

o. o 

0.05 ~ ~  

~ -1.0 
Fig. 2. Probability distribution P(#;y, a)A# with 3#=0 .05  at y =  3.5. The probability 

distribution for a < 0 can be obtained from the relation P(/~; y, a) A/t = P( --#; y, - a )  A#. 
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The statistical weight a describes the situation in which three consecutive 
residues have certain restricted, i.e., a-helical, conformation but no 
hydrogen bond. Usually the a has a small value, such as a = 10 4. We 
assume that the first residue is always in the coil state and the last is 
free. (14) For  the configurations that the polypeptide has k clusters of helical 
residues and Nh residues in the helical state, the total statistical weight can 
be written as 

W u ( N h ; k ) = ( N c ) ( N h - - l ~  \ k j \ k _ l j S U h 6  "k for k r  (5.2) 

where Nh + Nc = N. The fluctuations of the fraction of helical amino acids 
are described by the probability distribution 

k0 

PN(O = Nh/N; s, a) - ~ WN(O; k)/~N(S , if) (5.3) 
k = 0  

where ~N (S, 0") is the partition function. Putting 

a=-U(s - 1)/2 and y = - S x / ~  (5.4) 

we can write 

Z~(a, y) = ea[cosh u - (a/u) sinh u] (5.5) 

in the limit as N goes to infinity with fixed a and y, where u =-(a 2 _1_y2)1/2. 

Then we have 

dP~(O; a, y) e-ag)(O) + 2y2z 1(1 - O)e (2~ 1)aIl(Z ) 
dO cosh u -  (a/u) sinh u 

(5.6) 

with z -= 2y [ 0(1 - 0) ] 1/2. Figure 3 shows the probability distributions (5.3) 
for o = 10  - 4  and N =  200 and 2000. For  N =  200 the probability at 0 = 0 
is dominant  for s < 1 and becomes very small for s > 1 after a drastic 
change near s = 1. The probability distribution on the interval 0 < 0 < 1 is 
rather fiat for s < 1, has a very broad peak for s,-~ 1, whose position moves 
from left to right and approaches 0 = 1 as s increases, and has a sharp peak 
near 0 =  1 for s >  1. Hence, the helix-coil transition for N = 2 0 0  is 
analogous to the first-order phase transition. For  N =  2000 it seems that 
the probability distribution has always a single peak, which is very sharp 
when s is apart  from the transition point s = 1 and becomes broad near the 
transition point. The peak position is at the point 0 =  0 for s <  1, moves 
rapidly from left to right near the transition point, and approaches 0 = 1 
for s >  1, as s increases. Thus the helix-coil transition for N = 2 0 0 0  is 
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continuous and diffusive. Note that Eq. (5.6) gives an approximate 
probability for a finite N and in general not a correct one, so that the 
probability is not normalized. This is caused by using different types of 
approximations for the numerator and the denominator in Eq. (5.6). 
Indeed, the value of the probability is sensitive to the large-N approxima- 
tion in the exponential part. The approximation Zo~ deviates from Z~v by 
a multiplicative factor of O(1) for N ~ u  2. Nevertheless, Eq.(5.6) still 
describes in qualitatively correct way the features of the probability dis- 
tribution for the helix-coil transition, normalized by a suitable constant 
(see Fig. 4.) 

N=200 

P(AO) 

0.6 '  

0.4 

0.2 

0 
i 

0.5 
0 

1.16 

s 

O0 

1.0 

(a) 
N=2000 

P(AO) 

0.6. 

0.4" 

0 . 2  

0 

0 

/'- 1.16 

s 

1.00 

0.84 
0.5 

0 1.0 

(b) 
Fig. 3. Probability distribution P(O; s, a)AO for (a) N = 2 0 0  and (b) N =  2000. Parameter 
values are ~ =  10 -4 and A0=0.02 for N = 2 0 0  and AO=O.O1 for N = 2 0 0 0 .  As s-~ 1, the 
PN(O; S, ~)AO has two peaks for N =  200 and a single peak for N =  2000. 
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Fig. 4. Differences between the probability distributions (5.3) and (5.6) for N= 2000 and 
a = 10-4. Here fiP(AO) - -  P N ( O ;  S, ~r) A O  - -  P~o(O; s, a) AO, where AO = 0.01. The position of a 
peak for the P~(O; s, a) AO tends to shift slightly from that for the PN(O; s, a) AO to the right. 

The distribution function for the number of helical clusters can be 
easily calculated from the power series expansion of the partition function 
for a: 

1 aklt~k 

A a = O I  

] (1ra~t/2(y2~ k t /2(a)]/e-aZN(a,y) 
~-- ~.. \ - 2J  \2--aJ [Ik- ,/2(a) -- I~ + (5.7) 

Figure 5 gives the probability distribution of the number of helical clusters 
in the cases N-= 200 and 2000. For Nw/'~ < 1 ( N =  200) we can expect that 
the polypeptide is in a random coil state with no helical cluster for s < 1 
and in a state with one helical cluster for s > 1. Even near the transition 
point we have only one or two helical clusters. For Nx/-~>> 1 ( N =  2000) 
the number of helical clusters increases and the probability of  a small 
number is negligible as s approaches the transition point. In conclusion, the 
helix-coil  transition in a polypeptide with a large N of O(a - m )  is 
qualitatively different from that found in the thermodynamic limit. 
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Probability distribution ON(k; s, ~r) for (a) N =  200 and (b) N =  2000. 

APPENDIXA.  BOUNDARY CONDITIONS AND 
FLUCTUATIONS 

We study fluctuations of an average spin for 1DNNDI systems with 
different boundary conditions. In the limit N ~  oe with Ne-2~J= y fixed 
the distribution function for the average spin is strongly affected by 
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boundary conditions, as the correlation length grows up 
consider the Hamiltonian 

to O(N). We 

N N 
H({~})= - J  y, o~,~;+,-h Z '~, (A.1) 

i=O i=1 

with the following boundary conditions: (1) ( + + )  boundary, ao= 
0"N+l  = -t-1. ( 2 )  ( - ] - - - )  boundary, ao= +1 and 0"N+l  = - -1 .  ( 3 )  Free 
boundaries, ao = 0"N+I = 0. (4)  A finite chain embedded in an infinite chain. 
Using the transfer matrix 

efl(J+h) eB(-d+h) "] 
T=\e-#(J+h) eft(J--h) ] 

we get the partition functions 

i-.~(+ +)( f l ,  h ) -  "9--fib[ K' ~ - - I ] N +  1 - ~  ~o1~o~,~+ +Sj2S~12N +1) 

~'(free)fR h) = ( a l l  + S21)(S~lle flh -I.- S1-21e flh)•N- 1 '~" N \P" 

AV (S12 -~- 822)( $ 211e flh -t- $221e - #h ) } N_- 1 (A.2) 

etc., where Sej and S~ ~ are elements of regular matrices such that 

S-~TS = (20  20_) and S - t S = S S - ~ =  1 

\Here, the superscript on 3 N denotes the boundary conditions. 
The whole of the statistical weights for configurations with m({a })= # 

and k clusters of spins down is given for N ~> k by 

W(+ + ) ( . /  N 2~ ,,~, ~_ ~-(1 +u) k! ( ; -  1)! [(~N)2 (1 - ~2)] *- '  e--4k#J e(N + 1)flJ+ Nflph 

(A.3a) 

in the case (1), and 

w i ; _ - ? ( ~ )  - ~ [(k 11)!]2 I(~N)2 (1-/22)]k-1 e "2(2k X't~Se(N+l'#J+N~uh 

(a.3b) 

in the case (2). In the limit (4.20) the distribution function (3.10) can be 
written as 
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dP(~ + +)(it; y, a) ea6(# - 1) + (1 + #) y2(2z) - l  e'uaI1 (Z) 
dit cosh u + (a/u) sinh u 

-)(it; y, a) e"%(z) 
dit (2/u) sinh u 

(free) . dP~ (it, y, a) 

( A . 4 )  

e~5(I ~ - 1) + e-~5(it + 1) + y#'"Io(z ) + y2z-le~"I1 (z) 
2[cosh u + (y/u) sinh u] 

where u - ( a  2 +y2)~12. In the case (4), the distribution function is given by 

p ( e m b e d ) / t , "  R h ) ~ _ _ . . ~ + ( N + I )  r c  ~ - l o f l h H z ( + + ) ( i t ) + S l l S 1 2  e m2k_l(it) N t ~ , r ' ,  E - 1  -Bh (+ ) L ~ . l l , J l l  ~ rv 2k 
k 

+ $2, Sn'enhW(2;_+)l(#) + $21S~le-BhW(fk - ) ( i t ) ]  (A.5) 

As the limit (4.20) is taken, Eq. (A.5) becomes 

(embed)  . dPoo (It, y, a) 1 [(a) (a)m_ - 1+ u e~3(it- 1) + e-~6(it + 1) 
2e" 

+@eV~lo(z)+(l+~au)@e~"ll(Z)] (A.6) 

Note that the coefficients SilS~ 1 in (A.5) cannot be replaced into 
Si~S~ISjlS~ ~ because the correlation between the spins on both ends of 
the embedded chain is strong. 

I t  is easy to calculate the distribution function for the number of 
cluster surfaces. Expanding the numerators and denominators on the rhs of 
(A.4) into power series of y, we can write the distribution functions O~(k) 
and O~(k) in the cases (1)-(3). We have, for example, 

O~+-)(2k-1;it, Y) [ ( k _  1)!]2 Io(z) (A.7a) 

l lc  
( ahlJ2(/? 
kT) (free) . a) = ~" Ik_ re(a) for 1 = 2k 

0~176 (I'Y' C (2 )112  (y2"~k 
I,k! - -  y t ~ a )  Ik+lj2(a) for l = 2 k +  1 

(A.7b) 

with i~-l=coshu+(y/u)sinhu.~ Note that o~(fr~e) . ( l , y , a=0 )  gives a 
Poisson distribution, which agrees with the result of ref. 5. As the 
coefficients of Wk in (A.5) depend on y, we cannot use a bare expansion 
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of the denominator on the rhs of (A.6) in the case (4). From (A.3), (A.5), 
and (A.7b), we can write 

O (embed)i/. a) 

f ~ l r a l / 2 y 2 k  a 1 
= /y2\k+ 1 1 u 

~,k! (2na)1/2/~a) u e -  Ik+l/2(a) 

for l = 2k 
(A.8) 

for / = 2 k + l  

APPENDIX B. ANTIFERROMAGNETIC  CASE ( J < 0 )  

We study the asymptotic behavior of the fluctuations of the average 
spin for the system (2.1) with J < 0  as N and fllJI go to infinity. The term 
W2k(/~) at k = kN(#) is maximum in the cluster expansion (3.9). For N and 
fl IJ[ >> 1 we can write 

2(ko - ku) "~ N(1 - 1#1 )2(#2 ..~ e-4/~lJq )1/2 _ 1~1 ] 

(2 ]#J)-1(1 - ]#J )2 Ne-4a  LJL 

~-- [Ne-2t~lJI { [ ( # e Z f l l J I  )2  -k- 1 ] 1/2 - -  I#1 eZCVt } 
if 1#1 >>e -21sl 
if 1#1 ~ e2/~lsl 

(B.2) 

i.e., kN approaches ko exponentially as fl [J[ ~ oo with fixed N. The main 
contributions to the partition function come from Wzk of small j ~ k o -  k. 
The statistical weight (3.8) can be written as 

(B.2) 

for N and ko>>j, where the B(#) and z are given by 

2 f l  -#2~N1"1/2 f l  + I#1~ N/2 
B(#) = 1 + [#-----] \ 4# 2 ] \ i - ~ J  (B.3a) 

z = (1 - [#1)  N e-2~lsl (B.3b) 

Inserting (B.2) into (3.10), we have 

( 2Nllz] ~ NI~'I 
PN(~; fl, h) oc B(l~) k--~z / iNl~l(z)eiB(--21,~q +#h) (B.4) 
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for N and/3 JJI >~ 1. Using Stirling's approximations in (B.2), we can write 
Eq. (B.4) for N]/~I >> 1 as 

[ N ( 1 -  [~.~1 )_2 d--4fliJ].] 
PN(lt;fl, h) oc B(#)exp N/3(-Z[#JI + # h ) §  41#1 J 

Inserting (B.5) into (2.9) gives the entropy function 

sN(#;/3) ~ - 2/3 IMI - I~1 ln(2 I~1) + ~ (1 + I~1) ln(1 + I~'1) 

(B.5) 

( 1 - 1 ~ 1 )  2 
- - e - 4 f l t J I  - ln (1  + e - 2 i l l ' I t  ) l ( l _ l # [ ) l n ( l _ l # r ) +  41#1 2 

(B.6) 

which agrees with the Legendre transform of the free energy, given by 
Eq. (4.4), (13) for [#1 >)'e-2/~lSl. Equation (B.6) is singular at if=0, as is 
Eq. (4.4) in the limit fl ]J[ ~ oo. Therefore, small deviations of the fluctua- 
tions are described by a non-Gaussian distribution. We set y =  Ne -2ajsl 
and /=N/~, and consider (B.4) in the limit N ~  oo with fixed y and L In 
this limit, we have the following: 

e 

{22 cosh[y cosh(/3h)] for N=evenand~h~O(1)  
~u(~'h)e-Nal11= sinh[ycosh(~h)] for N=oddand~h,-~O(1) 

Hence, we find that the small deviations for N and fllJ] >> 1 can be 
described by the probability distribution function 

if N and l are even 
(B.7) 

if N and l are odd 
PN(l; fl, h) = ~ Jhlftl(y)/c~ cosh(flh)] 

~ etahllll( y )/sinh[ y cosh(flh)] 
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